Exercise Set 17 Answers
A normally distributed random variable \(X\) has mean \(1\) and variance \(4\). Using tables, find
- \(P(X>0)\)
- \(P(X<2)\)
- \(P(|X|<1)\)
- the value of \(c\) such that \(P(X<c)=0.0643\)
Answers:
Let \(Y = \frac{X - \mu}{\sigma}\), where \(\mu = 1\) and \(\sigma = 2\). Therefore \(Y\) is a standard normal random variable, and \(X = \sigma Y + \mu\).
\[\begin{eqnarray*} P(X > 0) &=& P([2 Y + 1] > 0)\\ &=& P(Y > -1/2) \\ &=& 1 - P(Y > 1/2) \qquad \mbox{due to symmetry}\\ &=& 1 - 0.3085 \qquad \mbox{from tables}\\ &=& 0.692~\text{(3 s.f.)} \end{eqnarray*}\]
\[\begin{eqnarray*} P(X < 2) &=& P([2 Y + 1] < 2)\\ &=& P(Y < 1/2) \\ &=& 1 - P(Y > 1/2) \qquad \mbox{due to symmetry}\\ &=& 0.692~\text{(3 s.f.)}\qquad~\mbox{from tables}. \end{eqnarray*}\]
\[\begin{eqnarray*} P(|X| < 1) &=& P(-1 < X < 1)\\ &=& P(-1 < 2 Y + 1 < 1)\\ &=& P(-1 < Y < 0)\\ &=& \frac{1}{2} - P(Y > 1) \qquad \mbox{due to symmetry}\\ &=& 0.5 - 0.1587 \qquad \mbox{from tables}\\ &=& 0.341~\text{(3 s.f.)}. \end{eqnarray*}\]
\[\begin{eqnarray*} P(X < c) &=& P([2 Y + 1] < c)\\ &=& P(Y < (c - 1) / 2)\\ &=& P(Y > (1 - c) / 2) \qquad \mbox{due to symmetry}. \end{eqnarray*}\]
From tables we have that \(P(Y > 1.52) = 0.0643\), and hence we want the value of \(c\) such that
\[\begin{eqnarray*} (1 - c) / 2 &=& 1.52\\ c &=& -2.04. \end{eqnarray*}\]
A normally distributed random variable \(X\) has mean 1 and variance 5. Using tables, find:
- \(P(X > 1)\)
- \(P(|X| < 0.1)\)
- The value of \(c\) such that \(P(X < c) = 0.01287\)
Answers:
\[\begin{eqnarray*} P(X > 1) &=& P(Z > \frac{1 - 1}{\sqrt{5}}) \quad \mbox{where $Z \sim N(0, 1)$}\\ &=& P(Z > 0) \\ &=& 0.5 \quad \mbox{from tables}. \end{eqnarray*}\] (Or could answer this by noting a symmetry argument with \(E(X) = 1\) and therefore by definition \(P(X > 1) = 0.5\) since the normal distribution is symmetric about the mean.)
\[\begin{eqnarray*} P(|X| < 0.1) &=& P(-0.1 < X < 0.1)\\ &=& P(\frac{-0.1 - 1}{\sqrt{5}} < Z < \frac{0.1 - 1}{\sqrt{5}}) \quad \mbox{where $Z \sim N(0, 1)$}\\ &=& P(-0.4919 < Z < -0.4025)\\ &=& P(Z > 0.4025) - P(Z > 0.4919) \quad \mbox{by symmetry}. \end{eqnarray*}\] To calculate \(P(Z > 0.4025)\) and \(P(Z > 0.4919)\) we need to use linear interpolation. Firstly, we note that \(P(Z > 0.40) = 0.3446\) and \(P(Z > 0.41) = 0.3409\), and therefore \[\begin{eqnarray*} P(Z > 0.4025) &=& P(Z > 0.40) - \frac{0.4025 - 0.4}{0.41 - 0.4}\left[P(Z > 0.40) - P(Z > 0.41)\right]\\ &=& 0.3446 - 0.25 \times 0.0037\\ &=& 0.3437~\text{(4 s.f.)}. \end{eqnarray*}\] Secondly, we note that \(P(Z > 0.49) = 0.3121\) and \(P(Z > 0.5) = 0.3085\), and therefore \[\begin{eqnarray*} P(Z > 0.4919) &=& P(Z > 0.49) - \frac{0.4919 - 0.49}{0.5 - 0.49}\left[P(Z > 0.49) - P(Z > 0.5)\right]\\ &=& 0.3121 - 0.19 \times 0.0036\\ &=& 0.3114~\text{(4 s.f.)}. \end{eqnarray*}\] Therefore, \[ P(|X| < 0.1) = P(Z > 0.4025) - P(Z > 0.4919) = 0.3437 - 0.3114 = 0.0323~\text{(4 s.f.)}. \]
From tables we have that \(P(Z > 2.23) = 0.01287\) and so by symmetry \(P(Z < -2.23) = 0.01287\). Therefore, \[ P(X < c) = P\left(Z < \frac{c - 1}{\sqrt{5}}\right), \] and this implies that \[\begin{eqnarray*} \frac{c - 1}{\sqrt{5}} &=& -2.23\\ c &=& -2.23 \times \sqrt{5} + 1\\ &=& -3.986~\text{(4 s.f.)}. \end{eqnarray*}\]
A thermostat is set to switch at \(20^\circ\,\text{C}\) operates in a range of temperatures with a mean value of \(20.4^\circ\,\text{C}\) and a standard deviation of \(1.3^\circ\,\text{C}\). What is the probability that its operating temperature will fall between \(19.5^\circ\,\text{C}\) and \(20.5^\circ\,\text{C}\)?
Answers:
The operating temperature is a normal random variable \(X\) with mean \(\mu=20.4\) and standard deviation \(\sigma=1.3\). We are looking for \(P(19.5<X<20.5)\). The equivalent probability of a standard normal random variable \(Z\) is given by the limits \[ z_1 = \frac{19.5 - 20.4}{1.3}=-0.69 \quad\text{and}\quad z_2=\frac{20.5-20.4}{1.3}=0.08\] that is \(P(-0.69< Z <0.08)\). Using standard normal distribution tables: \[\begin{align*} P(-0.69< Z <0.08)&=P(0<Z<0.69)+P(0<Z<0.08)\\ &= 0.2549 + 0.0319\\ &= 0.2868. \end{align*}\]
The life of a drill has a mean of 16 hours and a standard deviation of 2.6 hours. Assuming it is normally distributed determine the probability of a bit lasting
- More than 20 hours.
- Less than 14 hours.
Answers:
The time is a normal random variable \(X\) with mean \(\mu=16\) and standard deviation \(\sigma=2.6\).
\(P(X>20)\). The equivalent probability of a standard normal random variable \(Z\) is given by the limit \[ z = \frac{20 - 16}{2.6}=1.54\] that is \(P(Z >1.54)\). Using standard normal distribution tables: \[\begin{align*} P(Z>1.54)&=1-(P(0<Z<1.54)+0.5)\\ &= 0.5 - 0.4382\\ &= 0.0618. \end{align*}\]
\(P(X<14)\). The equivalent probability of a standard normal random variable \(Z\) is given by the limit \[ z = \frac{14 - 16}{2.6}=-0.77\] that is \(P(Z <-0.77)\). Using standard normal distribution tables: \[\begin{align*} P(Z<-0.77)&=1-(P(0<Z<0.77)+0.5)\\ &= 0.5 - 0.2794\\ &= 0.2206. \end{align*}\]